Interconnectivity Infrastructure Group TIGER TEAM

Participating organizations, presented in alphabetical order, who participated substantively and contributed to the analysis contained herein:

ANDREWSEYBOLD

V11.1 June 4, 2012

Carrier - Technical Validation

Public Safety Sponsors:

The Interconnectivity Infrastructure Group (IIG)

- IIG includes lead architects from eight organizations
- The team was originally established to determine best infrastructure interconnectivity solution for the Early Builders.
- Team reconvened to analyze impact of a suspension
- All members of the IIG team were involved in the development of this material.

Executive Sponsors

Bill Schrier – City of Seattle **Todd Early** – State of Texas **Jim Bogner** – State of Iowa

IIG Tiger Team

Alcatel-Lucent – Wim Brouwer
Andrew Seybold, Inc – Andy Seybold
City of Charlotte – Steve Koman
Cynergyze/TX – Cynthia Wenzel Cole
Ericsson – Patrik Ringqvist
Harris – Reid Johnson
IPWireless – Keith Sinclair
Motorola Solutions (MSI) – Gino Scribano
Nokia-Siemens Networks – Brian Kassa
State of Texas – Mike Barney

IIG Technical/Carrier Validation

AT&T – Stacey Black
Verizon Wireless – David Anderson

IIG Tiger Team Assignments

- Examine the risks of creating "stranded" LTE equipment investments;
- Determine the implications of multiple vendor environments;
 - Focus on testing complexity and deployment strategies which reduces complexity
- Establish the value of allowing projects to continue, including:
 - Harvesting the lessons learned from those projects,
 - Examine ways early projects can provide benefits and reduce risk of future rework
 - Examine scenarios in which Early Builders have already purchased equipment
- Support "FirstNet Phase One" Proposal

Conclusions

The commercial carriers have remained neutral and did not weigh in on these conclusions.

- The current governing entities should be assured Early Builders will support and abide by FCC and FirstNet directives.
- It will be better for FirstNet to use Early Deployments to find problems early, when they are small/regional rather than later when they are larger or become nationwide.
 - Suspending early build-outs increases risks for FirstNet
 - Nationwide network build-outs rely heavily upon effective Pilot programs
- Enabling Early Builders to deploy in controlled "FirstNet Phase One" pilot programs lowers risk for FirstNet.

Conclusions, cont'd

The commercial carriers have remained neutral and did not weigh in on these conclusions.

- The potential cost of stranding some LTE equipment is relatively low compared to total PS LTE deployment costs.
- Complexity of testing can be managed using well-known industry Best Practices and can be minimized by "equipment grouping" within the network.
- Multi-Vendor Interoperability over standards-based interfaces is being successfully managed all over the world.
 - Implications of fewer vendors and a suspension of deployments risks stifling both innovation and competition.
 - Vendors may reduce investment in PS-centric capabilities
 - Ultimately driving up costs and lowering value to PS.

LOWERING THE RISK OF STRANDED INVESTMENTS

Factors Which Lower Risk of Stranded LTE Eqt

- Use of open, LTE 3GPP standards promotes interoperability across the entire ecosystem, thus reducing the risk of stranding equipment.
- Interoperability Showings articulate commitment to comply with specific FCC and 3GPP requirements in intricate detail.
- All of the major vendors and Early Builders have agreed on an interconnect model which:
 - Uses well-established principles and practices used by commercial carriers
 - Can easily be integrated or adapted to FirstNet
- The Numbering Scheme was developed by DHS-OEC in partnership with OAC, to ensure a smooth integration with FirstNet.

Factors Which Lower Risk of Stranded LTE Eqt

- Hosted Core options present lower risk of stranded equipment cost being carried by public safety agencies.
- Ability to repurpose equipment. This flexibility might prevent a device from being scrapped all together.
 - Same component may be used by multiple EPC Elements
 - Same hardware may be used for multiple EPC elements, can be reconfigured and reused by FirstNet
 - Would have to be assessed on case by case basis.

Factors Which Lower Risk of Stranded LTE Eqt

- Band 14 UEs and eNodeBs support both the 5+5 MHz waiver network spectrum as well as the 10+10 FirstNet Spectrum now available with the addition of the D Block
 - No need to reconfigure devices, they will support both.
 - Base stations can be reconfigured to support 10+10 MHz, it is just a parameter change
 - Note requires downtime for cell during re-configuration
 - No changes in EPC (core) needed for this re-configuration.
 - Some devices may require additional FCC type approvals

Assumptions, Introduction to Scenarios

- All design options constitute "one, single network" as required by the statute.
 - The design is established with the single, Common PLMN ID
 - Single network can be comprised of multiple Sub-Networks and still be part of one, single network
 - We are not proposing a "Network of Networks" solution
- Scenarios have been developed using real network examples but illustrate generic concepts that can be applied to any system.
 - For examples, we used four "Early Builders" systems, City of Charlotte,
 State of Texas, State of Mississippi and Adams County, CO
- Scenarios show how early networks could migrate to various FirstNet design options.

LTE Equipment Cost Model

- Typical Large network deployments allocate costs as follow
 - RAN Build-out 80%
 - Equipment 10% Backhaul 20%
 - Site acquisition, civil work, hardening, installation, etc.— 70%
 - Core Build-out 20%
 - Equipment 50%
 - Services 50%
- Each primary EPC elements (HSS, PCRF, MME, S&P GW and Network Management) attracts approximately 20% of equipment costs
- FirstNet Single Network Design examples, some of the options analyzed:
 - Distributed HSSs
 - Keep all equipment
 - Centralized HSSs
 - Keep Network Management, S&P GW, RAN, PCRF and MME
 - Consolidate HSSs into centralized FirstNet Core

Caveats:

- These ratios are based on medium to large commercial network build outs.
- A 10% swing in the ratio results in a 2 cent change in the result

For Every Early Deployer Dollar Spent

LTE Equipment Cost Model

- FirstNet Single Network Design examples, some of the options analyzed :
 - Centralized HSSs + PCRFs
 - Keep Network Management, S&P GW, MME and RAN
 - Consolidate HSS, PCRF into centralized FirstNet Core

Centralized HSS & PCRF Approx. 8% O.08 RAN stranded Core Kept

■ Core Discarded

8.0

For Every Early Deployer Dollar Spent

- Keep Network Management, S&P GW and RAN
- Consolidate HSS, PCRF & MMEs into centralized FirstNet Core
- MMEs could be taken over by FirstNet thus taking this scenario back to 8 cents stranded

Caveats:

- These ratios are based on medium to large commercial network build outs.
- A 10% swing in the ratio results in a 2 cent change in the result

Scenario 1 Distributed HSSs (pre FirstNet RFP)

IIG Tiger Team - Technical Backgrounder

Scenario 3 Migrating to Centralized HSSs

- Potential multi-vendor Interoperability Interfaces: S5, S6a
- Four HSSs at risk
- HSSs would need resilience solution for no single point of failure (shown)

Scenario 4 Migrating to **Centralized HSSs & PCRFs**

- Potential multi-vendor **Interoperability** Interfaces: S5, S6a, Gx
- Four HSSs + four **PCRFs** at risk
- All calls on entire network would route to HSS/PCRF location

eNB

Charlotte, NC

CharMeck

Approx. 8%

stranded

MME

PGW

SGW

eNB

Centralized HS, PCRF & MME **Scenario 5 Migrating to** eNB eNB eNB 0.08 Centralized HSSs, PCRFs & **RAN FN RANS MMEs** Centralized EPC **HSS** HSS **PGW PCRF MME** SGW Local Core **PGW** SGW Upper Core Commerce City, CO S5, S6a, S1-MME,

eNB eNB eNB RAN Adams Co, Colorado **IPWireless** Raytheon ADCOM 911

- **Note increased** centralization increases number of interop interfaces
- Potential multi-vendor **Interoperability Interfaces:** S5, S6a, S1-MME, S11, Gx
- Four HSSs + four PCRFs at risk
- Other combinations of equipment are possible

RAN Approx. 12%

■ Core Kept

Core Discarded

stranded

FCC OBI Technical Paper No. 2 Cost Model¹

- Estimated CAPEX cost of building network is \$15.6B
- Approximate cost of EPC (core) equipment is \$1B
- Worst case for stranded equipment is approximately 6% of nationwide CAPEX spend

 The OBI figures generally substantiate the IIG cost analysis, shown previously

¹ "A Broadband Network Cost Model," OBI Technical Paper No. 2, FCC, May 2010.

INTEROPERABILITY STATUS

Interoperability & Interconnectivity

- Use of open 3GPP standards enables interoperability.
- With the filing of the Interoperability Showings, the manufacturers and agencies have provided detailed information regarding all commitments to FCC interoperability requirements.
- Commercial carriers typically employ multiple vendor equipment suppliers
 - Significant IOT has been and will continue to be done by commercial carriers
- Best Practices design requires only a small subset of standardized interfaces to be exposed between vendors.
 - How the network is designed is a much greater predictor of test loading and complexity than just how many vendors
- Use of interfaces which are more frequently used to interconnect different vendors' equipment, such as S6a, S5 and Gx, reduces risk overall by leveraging commercial successes.

Deploying EPC Components into Vendor "Groupings" Reduces Complexity

- "Grouping" by vendors dramatically reduces complexity by exposing fewer interfaces, requiring less Interoperability Testing (IOT)
 - Commercial LTE carriers use this technique successfully
- Another technique is to mix vendors, but on a regional basis.
 - Commercial LTE carriers also use this technique successfully
- Using a different vendor for every component is unmanageable
 - Creates thousands of test cases
- Using a single vendor is also problematic, creating reliability problems, lack of competitiveness and potentially, driving up overall costs.
- Many design scenarios are possible, examples next...

Introduction to Vendor Groupings

Purpose is to Show How Multiple Vendors Can Work Together Effectively Vendor Colors and Labels DO NOT correspond to particular manufacturers! **HSS Vendor C Many Combinations** Denotes designs in operational **Possible** use today **PGW Vendor B PCRF SGW** Color Vendor X blocks do NOT imply **Fundamentally** geographical or physical location. **Defines Level of IOT Required** MME Color Vendor X blocks do NOT imply ownership. **eNB eNB eNB Vendor A Example**

Vendor "Grouping" Examples

- **Examples show multiple** ways to achieve manageable inter-vendor IOT and management scope
- Some being used today
- **Complexity can be further** reduced by "regionalizing" deployments (not shown)

2-vendor RAN

Vendor "Grouping" Examples, cont'd

- Above examples illustrate additional options
- Allowing an extreme mix of vendors, such as shown in example at left, creates an unmanageable environment and is a non-starter
- Single vendor eliminates competition and is a non starter

ADVANTAGES OF EARLY BUILD-OUTS

Advantages of Early Build-Outs

- Early Builders will reduce the cost of FirstNet deployment
- Deliver desperately needed PS LTE services sooner
- Maintain goodwill with early adopters, sponsors and public safety practitioners.
- Pilot programs accelerate learning and buy down risks

Large Commercial Deployments Use Pilot Programs to Reduce Risk

- Mirrors the approach taken by national telecommunications carriers
 - e.g. Verizon created extensive pilot networks in Boston and Seattle before architecting and building out its nationwide network
 - e.g. AT&T created pilot in Dallas
- Inevitable flaws, bugs and problems are revealed in and contained by smaller, regional settings, reducing nationwide impact.
- For an efficient nationwide rollout, FirstNet will need to be deployed simultaneously, in multiple regions and in phases
 - Early Builders provide operational foundation and opportunity to learn earlier
 - Implementation lessons learned can be leveraged into better results in subsequent phases

Potential Lessons Learned by Deploying "FirstNet Phase One"

- FirstNet architecture based on city, county and statewide environments reflected by the diversity of the Phase One jurisdictions.
- Ability to learn about PS LTE interoperability
- Opportunity to begin climbing technical learning curve.
- PS have and will continue to gain significant insights through RFP processes, a powerful method for developing detailed understanding of the contracting and business challenges.

Potential Lessons Learned by Deploying "FirstNet Phase One," cont'd

- Development of applications, applications stores, standards for applications, creating well-behaved applications, frugal with network bandwidth
- Development of processes and requirements for security and network management, provisioning, priority tweaking, single sign-on
- Enabling cultural changes in the responder community which are engendered by the deployment and use of the network and applications
- Creating opportunity to initiate changes necessary to fully integrate PS BB services into day-to-day PS operations

THANK YOU!